
On the Importance of Older Age Mortality Rate Estimates 

Background 

The fundamental currency in life-actuarial science is the mortality table. A mortality table 

classifies a person and based on their characteristics, predicts the mortality rate. Mortality rates 

typically vary by attained age and sex. In addition, it is also common to vary mortality rates by 

policy features1, policy year, underwriting status and other variables. Mortality tables typically 

go from some minimum age (some tables start from birth or 0) to an ultimate age. Lately, this 

ultimate age has been set to 120 (SOA, n.d.). These older ages which I will define as over 100 

years old, is the topic of this paper as determining an appropriate ultimate age is challenging. 

Two clear reasons are mortality improvement and lack of data. Mortality has improved 

significantly since the beginning of the 20th century which has made some pioneering mortality 

tables obsolete (initially 100 was the ultimate age (in the 1940s) and 120 eventually became the 

standard for Commissioner’s Standard Ordinary Tables (SOA, n.d.)). As for data insufficiency, 

insurers generally lack credible data for people over 100 years old. One explanation is that many 

people do not live to be over 100 years old. This explanation begs the question, do age 100+ 

mortality rates financially matter to an insurance company? Based on the Individual Annuity 

Mortality table (“IAM”), it appears that the answer is not really.  

It is important to highlight how mortality improvement could undermine this argument. 

Mortality improvement could reduce all mortality rates and thus lead to a situation where a 

significant number of people do in fact live into their 100s. For example, if this argument was 

made back in the 1940s it would not have held water. The argument may have been since 70-89 

mortality rates were so high (at that time), then 90–99-year-old mortality does not matter (the 

ultimate age was 100). However, this would have failed to consider mortality improvement. To 

bring it back to current times, if mortality improves for ages 85-99 dramatically, then more 

people will live into their 100s and therefore these old age mortality rates will become more 

impactful. From this line of thinking, it may be mortality improvement that insurance companies 

should be concerned with rather than the mortality rates for people over 100-years-old. Mortality 

improvement is the only way to make these 100+ mortality rates matter financially.  

Mortality improvement is not an exact science, it may ebb and flow with external events in both 

favorable (new medical treatment) and unfavorable (opioids) directions. Further, as evidenced by 

the 2010s and early 2020s, mortality does not improve in perpetuity (Kochanek et al, 2020). 

Some posit that there is an ultimate age where all human biology fails and therefore it is 

impossible to live past this age. Others believe that since this ultimate age has been pushed back 

further overtime (SOA, n.d.), there is no limit (or the limit is well above the 120 years). This 

argument is perhaps spurious and best left to scientific researchers since so few people live to be 

over 110.  

This paper provides quantitative examples and highlights the fact that misestimates in the older 

mortality rates (ages 100+) are not as impactful as misestimates for younger age ranges (younger 

 
1 Policy features can be predictive. For instance, if person has a richer plan design, they may a wealthier person 

which may correlate to lower mortality. 



is perhaps a misnomer as I am referring to ages 60-89). Actuarial present value will be used as 

the metric to measure financial impact. In the next section, I will describe the methodology and 

mathematical principles behind actuarial present value. The actuarial present value is the present 

value of expected insurance benefits. I will evaluate misestimates in mortality (applied to certain 

age groups individuals) for 3 life insurance products and assess the actuarial present value under 

each scenario. The three products tested will be payout annuities, traditional whole life insurance 

and long-term care (“LTC”).  

Mathematical Background 

The actuarial present value (“APV”) is the present value of benefits for an insurance product. 

The generalized discrete formula is below and assumes constant interest rates.  

𝐴𝑃𝑉(𝑥) =  ∑ 𝐵(𝑘) ∗ 𝑣𝑘 ∗ 𝑓(𝑘)

𝑤−𝑥

𝑘=1

 

𝑊ℎ𝑒𝑟𝑒;  𝐴𝑃𝑉(𝑥) =  𝑎𝑐𝑡𝑢𝑎𝑟𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 𝑎𝑠 𝑜𝑓 𝑎𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝑎𝑔𝑒 𝑥, 

𝐵(𝑘) = 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑝𝑎𝑖𝑑 𝑖𝑓 𝑖𝑛𝑠𝑢𝑟𝑒𝑑 𝑚𝑎𝑘𝑒𝑠 𝑐𝑙𝑎𝑖𝑚 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘, 

 𝑣𝑘 = 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑡𝑜 𝑎𝑐𝑐𝑜𝑢𝑛𝑡 𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑚𝑜𝑛𝑒𝑦 , 

𝑓(𝑘) = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛𝑠𝑢𝑟𝑒𝑑 𝑚𝑎𝑘𝑒𝑠 𝑎 𝑐𝑙𝑎𝑖𝑚 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘 

This is the generalized formula, and the formula can accommodate different life insurance 

products. f(k) can be thought of as the benefit trigger which will vary by product type. The 

benefit trigger for a payout annuity is if the person is still alive as of time period k whereas for 

whole life insurance it is if the person died in time period k. For LTC, it is a little more nuanced 

as the benefit trigger is, initially, whether the person qualifies for LTC benefits.2 Further, there is 

a secondary benefit trigger thereafter that determines if the person is still entitled to LTC benefits 

after becoming disabled. Below are the more detailed equations for whole life, annuities and 

LTC in that order.  

𝐴𝑃𝑉𝐿𝑖𝑓𝑒(𝑥) =  ∑ 𝐵(𝑘) ∗ 𝑣𝑘 ∗ 𝑝𝑥𝑘−1

𝑤−𝑥

𝑘=1

∗ 𝑞𝑥+𝑘−11  

For life insurance, f(k) turns into the probability that a person dies in time period k. This is 

equivalent to the probability to that they survived to the beginning of time period k ( 𝑝𝑥𝑘−1 ) 

multiplied by the mortality rate, which is a conditional probability. For life insurance, APV 

generally decreases (favorable to the insurance company) when mortality rates decrease.  

𝐴𝑃𝑉𝐴𝑛𝑛𝑢𝑖𝑡𝑦(𝑥) =  ∑ 𝐵(𝑘) ∗ 𝑣𝑘 ∗ 𝑝𝑥𝑘−1

𝑤−𝑥

𝑘=1

 

 
2 A person typically qualifies for LTC benefits if the insured cannot perform 2 out of the 6 activities of daily living or 

if they have significant cognitive decline. 



For annuities f(k) is the probability of survival.3 In this case, lower mortality rates (which 

increase survival probabilities) lead to an increase in the APV. Now, we will turn our attention to 

LTC, where we need more notation.  

𝐴𝑃𝑉𝐿𝑇𝐶(𝑥) =  ∑ 𝐴𝑃𝑉𝐷𝑖𝑠(𝑥 + 𝑘) ∗ 𝑣𝑘 ∗ 𝑝𝑥𝑘−1 ∗ (1 − 𝑞𝑥+𝑘−11 ) ∗ 𝑑(𝑥 + 𝑘 − 1)

𝑤−𝑥

𝑘=1

 

𝑝𝑥𝑘 =  𝑝𝑥𝑘 ∗ (1 − 𝑞𝑥+𝑘−11 ) ∗ (1 − 𝑑(𝑥 + 𝑘 − 1)); 𝑤ℎ𝑒𝑟𝑒 𝑝𝑥𝑘 = 1 

𝑑(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑎 𝑝𝑒𝑟𝑠𝑜𝑛 𝑎𝑔𝑒𝑑 𝑥 (𝑟𝑎𝑡𝑒 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒𝑦 𝑔𝑜 𝑜𝑛 𝑐𝑙𝑎𝑖𝑚)  

𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑎𝑙𝑖𝑣𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑. 

In this case, f(k) is set to the probability of the person becoming disabled (as defined by the LTC 

policy) in time period k. I set this equal to the probability of remaining active (not on claim and 

alive) times the probability of going on claim assuming deaths happen first (a simplification). In 

addition, B(k) also had to be transformed. I assumed that the “benefit paid” by the insurance 

company is the present value of the disabled annuity for someone who is disabled at age x+k. 

Like annuities, LTC APV’s increase when mortality decreases (more people are alive who can 

then become disabled and/or people stay on claim for longer).  

In this analysis, the 2012 female IAM was used as the starting point. Further, it was assumed that 

everyone was 60 years old at the start of the analysis. To evaluate the impact of mortality, I 

applied a 10% reduction in mortality to specific age ranges (see Table 1, below). As an example, 

when applied to the 100+ age range, this test represents mortality being overestimated by 10% 

for ages 100+. I cited deltas as a percentage change to ease the comparability.  

Table 1: Age Ranges 

Range # Age Range 

1 60-69 

2 70-79 

3 80-89 

4 90-99 

5 100+ 

 

Below is the survival curve and mortality rates for a female, 60 years old at the start of the 

analysis. Note that mortality rates drastically increase with age, which should come as no 

surprise. Further, only roughly 8% are expected to live to be over 100 years old based on this 

mortality table. Another aspect is that after age 107, the mortality rates are held level at 40%. I 

speculate this was a simplification made by the creators of the table and was needed because 

there is sparse data at ages 100+.  

 
3 In this paper I have assumed that payments are at the beginning of the year 



 

I must now quickly document some of the assumptions used, see Table 2 below. Of note is that 

this analysis is limited in that it does not consider any additional decrements besides mortality 

and incidence (Only LTC considers incidence). Considering other assumptions, would have been 

spurious as this analysis is purely on mortality rates.  

Table 2: Summary of Assumptions 

Product Name Assumption 

Life Mortality 2012 IAM Female Table 

  Payment timing End of year 

Annuity Mortality 2012 IAM Female Table 

  Payment timing Beginning of year 

LTC Mortality 2012 IAM Female Table 

  Incidence 50% x 2012 Female IAM Table 

  Policy features Lifetime benefit period, no EP 

  Payment timing End of year 

General Decrements 

Mortality is the only decrement (an 

exception is LTC) 

  Sex Females 

 

Analysis 

Life Insurance 

Recall the following equation from above. Note that a 5% annual discount factor was assumed 

throughout this analysis.  
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𝐴𝑃𝑉𝐿𝑖𝑓𝑒(𝑥) =  ∑ 𝐵(𝑘) ∗ 𝑣𝑘 ∗ 𝑝𝑥𝑘−1

𝑤−𝑥

𝑘=1

∗ 𝑞𝑥+𝑘−11  

Below are the baseline APV’s split out by age group using the raw 2012 IAM female table. Note 

that for life insurance, only a fraction of the value of benefits is attributed to ages 100+. The 

largest contributor is the 80-89 age group. This hypothetical life insurance policy only considers 

death benefits and ignores premiums and cash surrender value. Cash surrender values are 

typically required by law for some insurance products and the law calculates a predetermined 

amount the insurer must reward a policyholder who lapses. The cash surrender value has an 

interesting effect in that it leads to the life insurance being more risk neutral at older ages. It 

becomes especially more risk neutral to misestimates in the lapse assumption. The cash surrender 

value typically approaches the reserve value as the policyholder ages and the reserve value 

approaches the face amount as the policyholder ages. The insurer’s loss incurred is equivalent to 

benefit paid (cash surrender value or death benefit) less the reserve release (used to pay the 

benefits). Cash surrender values lead to higher premiums as well.4 

Table 3: Life Baseline Results 

Face Amount = 1000   

Age Range APV APV % 

60-69 48.93 16.3% 

70-79 67.19 22.4% 

80-89 100.69 33.6% 

90-99 72.79 24.3% 

100+ 10.05 3.4% 

Total 299.65  
 

As cited above a 10% reduction in mortality was run separately for all developed age groups. 

The table below presents the results of the table. APVs are aggregated to ease interpretation.  

Table 4: Life Sensitivity Results 

Face Amount = 1000   

Scenario APV 

APV Delta 

% 

Base 299.65  
60-69: Shock 296.50 -1.051% 

70-79: Shock 296.33 -1.109% 

80-89: Shock 296.36 -1.099% 

90-99: Shock 298.14 -0.505% 

100+: Shock 299.51 -0.046% 

 

Note that the 10% reduction for the 60-69, 70-79, 80–89-year-old mortality rates (each applied 

separately), reduce the actuarial present value of benefits by roughly 1.1% (favorable). However, 

 
4 Since the insurer has to pay more benefits, this is must be priced in 



only a 0.5% reduction was incurred for the 90-99 shock and a 0.05% reduction for 100+ shock. 

This indicates that misestimates of the 100+ ages are not extremely impactful. The interpretation 

is that a 10% reduction in the mortality rates for 100+ people decreases the APV by ~0.5%. This 

result is intuitive if we go back to the IAM survival curve. We see that a small percentage of 

people live to be over 100-years old. Therefore this 10% reduction at ages 100+ gets applied to a 

miniscule survival rate. In addition, if a company is concerned about too many people dying in 

their 100s, that is a good problem to have as it means more people are living longer and therefore 

the death benefits are getting deferred.  

Annuities 

Recall the equation for payout annuities. You will notice annuities are a classic case of incentives 

not being aligned between the insurer and the policyholder. In life insurance, both the insurer and 

the policyholder want the policyholder to live so both “win” when the insured lives a long life. 

For annuities, the policyholder benefits when they live a long life, but not just spiritually. They 

also financially benefit since payout annuities often (or at least they do in this example) pay until 

death of the policyholder. Since the financial payments are paid by the insurer it is in the 

insurer’s best interest for the annuity policyholder to die prematurely5. Insurers can counteract 

this by insuring a mix of life insurance and annuities which naturally hedge one another. If 

mortality goes up the life insurance will be costlier, but the annuities will be more profitable. The 

converse being true if mortality goes down.  

𝐴𝑃𝑉𝐴𝑛𝑛𝑢𝑖𝑡𝑦(𝑥) =  ∑ 𝐵(𝑘) ∗ 𝑣𝑘 ∗ 𝑝𝑥𝑘−1

𝑤−𝑥

𝑘=1

 

Table 5 below, shows the baseline APV contribution by age group. Surprisingly, this view shows 

that ages 100+ are even less impactful than life insurance. However, if we go back to the 

formula, we see that a lot of value will naturally be reaped in the beginning years since benefits 

are paid every year. In the early years survival probabilities are closer to 100% and the discount 

rate is closer to 100%.  

Table 5: Annuity Baseline Results 

Yearly Benefit = 1,000   

Age 

Range APV APV % 

60-69 7,935 52.9% 

70-79 4,427 29.5% 

80-89 2,077 13.8% 

90-99 534 3.6% 

100+ 34 0.2% 

Total 15,007  
 

 
5 Insurance companies are not known for their empathy. 



The table below, presents the results for each of the 10% reduction in mortality applied to a 

different age group. Similar to life insurance the 100+ shock is immaterial relative to the other 

age groups. 90-99 roughly half as material for the other age groups. We can also note that these 

are less impactful than for the life product. This may seem surprising, but perhaps it is driven by 

the fact that much of the value for annuities is hoarded in the initial payments. Further, life 

insurance is likely more sensitive to assumption changes since life insurance payments are 

concentrated at older ages where there are higher mortality rates.  

Table 6: Annuity Sensitivity Results 

Yearly Benefit = 1,000   

Scenario APV APV Delta % 

Base 15,007  
60-69: Shock 15,070 0.420% 

70-79: Shock 15,073 0.443% 

80-89: Shock 15,073 0.439% 

90-99: Shock 15,037 0.202% 

100+: Shock 15,010 0.018% 

 

LTC – Part 1 

Recall the equation used to estimate the actuarial present value for LTC below.  

𝐴𝑃𝑉𝐿𝑇𝐶(𝑥) =  ∑ 𝐴𝑃𝑉𝐷𝑖𝑠(𝑥 + 𝑘) ∗ 𝑣𝑘 ∗ 𝑝𝑥𝑘−1 ∗ (1 − 𝑞𝑥+𝑘−11 ) ∗ 𝑑(𝑥 + 𝑘 − 1)

𝑤−𝑥

𝑘=1

 

This equation shows that LTC’s actuarial present value (APV) is an APV of APVs. The inner 

actuarial present value fundamentally is an annuity for disabled lives. That is because once a 

person goes on claim they are paid benefits until they go off claim by either dying, recovering or 

running out of benefits. However, incurring a claim is similar to life insurance in that the benefit 

trigger is driven by a discrete event.  

Below are the actuarial present values by age contributions based on assuming a yearly benefit of 

1,000. The skewness for LTC is in between life insurance and annuities. Life insurance is slightly 

more skewed to the older ages whereas annuities are more highly skewed to younger ages. Like 

both annuities and life insurance very little value is concentrated in the ages 100+ because based 

on the IAM table, very few insureds live into this age group.  

  



Table 7: LTC Baseline Results 

Yearly Benefit = 1,000 

Age Range APV  APV % 

60-69 75 15.0% 

70-79 186 37.0% 

80-89 177 35.2% 

90-99 60 12.0% 

100+ 4 0.8% 

Total 503  
 

The first test ran was the standard test of shocking mortality down by 10% for each age group. 

For LTC, the age group 80-89 appeared to be most sensitive to a 10% shock in active mortality 

which is in slight contrast to life and annuities where the younger age group, 70-79, was the most 

sensitive. This is likely driven by the incident event for LTC. Like the previous products the 

100+ shock was relatively immaterial, but it was more material than the other two products. The 

age group 90-99 was very material but less material than the age groups 70-79 and 80-89. A key 

driver of the relatively higher sensitivity is the disabled mortality rates which are typically higher 

than active mortality rates. For this paper, I assumed a percentage load on active mortality rates 

(IAM) as defined by the graph below using made up numbers that linearly grade down to 100%. 

It is likely that the relative mortality gap decreases with age as the differences in health statuses 

for an older disabled and older active person is likely lower than for a younger disabled and 

younger active.  

 

 

Table 8: LTC Sensitivity Results 

Yearly Benefit = 1,000   

Scenario APV APV Delta % 

Base 503  
60-69: Shock 508 1.054% 

70-79: Shock 515 2.475% 

80-89: Shock 521 3.635% 

90-99: Shock 512 1.927% 

100+: Shock 504 0.161% 



 

In addition, to the standard 10% shock I have also tested one more scenario for LTC. In this 

scenario I set the starting age to 80 instead of 60. This may be more consistent with reality since 

many LTC carriers have stopped issuing LTC policies and manage these policies as a closed 

block (Cohen, et al, 2013). I ran the same test as before, a 10% reduction in each age-group’s 

mortality rate. Below are the baseline and the sensitivity results.  

Table 9: LTC - Starting Age 80 

Results 

Yearly Benefit = 1,000 

Age Range APV APV % 

80-89 303 57.8% 

90-99 207 39.5% 

100+ 15 2.8% 

Total 525  
 

Table 10: LTC - Starting Age 80 Sensitivities 

Yearly Benefit = 1,000 

Age Range APV  APV % 

Baseline 525  
80-89: Shock 567 8.049% 

90-99: Shock 559 6.467% 

100+: Shock 528 0.571% 

 

The 100+ age group contributes a little bit more to the total APV in this scenario than it did 

previously (at 2.8% vs. 0.8% in baseline). However, this is still not a large percentage 
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contribution. The bulk of the APV comes from the 80-89 age group which makes sense since this 

age is a prime claiming age and is before mortality rates get too high.  

After completing this test, the sensitivity for the 100+ age group is higher than previously. When 

shocking mortality rates go down 10% for 100+, this leads to a 0.57% increase in APV as 

opposed to 0.16%. Overall, it does appear that LTC is more sensitive to the 100+ mortality rates 

relative to other products but the younger age groups are still much more material. It does appear 

that LTC is extremely sensitive to misestimates on the disabled mortality front given disabled 

mortality rates are higher. The total APV is again most sensitive to the 80-89 mortality rates 

where the reduction of 10% leads to an 8% increase in APV which is fairly sizable. 90-99 is 

more impactful compared to the past iteration at 6.5%. Discounting may drive some of this 

increased sensitivity. In the baseline case at issue age 60, we were roughly 20 years away from 

the prime claiming age. However, in this scenario we start out in the prime claiming age.  

Conclusion 

With the exception of LTC, these quantitative tests on the IAM mortality table all indicate that 

100+ mortality should not materially affect insurance products since so few people make it into 

these ages for these older age mortality rates to matter. While LTC appears more sensitive, the 

80-99 age range is dramatically more sensitive than the 100+. It should be noted that the IAM 

should generally be thought of as a conservative (low) mortality table as it is meant to capture 

US annuitant mortality. The annuitant population is generally wealthier and in better health than 

the average American.  

My conclusion is that 100+ mortality rates actually hinge on mortality improvement. I do feel 

comfortable in saying that 100+ mortality rates should not materially impact insurance products 

in today’s mortality environment. However, I feel less confident in the validity of this claim to 

remain valid 20 years from now. It is entirely possible that there could be numerous health 

breakthroughs that extend human longevity such that living to 100 becomes normal.  

Based on the above it may be more prudent for actuaries to focus more on drivers of mortality 

improvement rather the older age rates themselves. This is because there are so few data points in 

these ages. Therefore, the concern should not be analyzing these un-credible6 data points but 

being watchful for scenarios that could lead to people to live into their 100s (which will yield 

more data points for one to collect). It should be noted that some people consider old age 

mortality to be those 80 or above. And as seen in this paper, these rates can still materially 

impact the actuarial present value.  

  

 
6 I am using credible in the actuarial sense. Which measures a statistical result can be relied upon. More data points 

leads to more actuarial credibility.  



References 

Cohen, M. A., Kaur, R., & Darnell, B. (2013). Exiting the market: Understanding the factors 

behind carriers’ decision to leave the long-term care insurance market. Draft Report provided to 

the Office of Disability, Aging, and Long-Term Care Policy. 

Kochanek KD, Anderson RN, Arias E. (2020). Changes in life expectancy at birth, 2010–2018. 

NCHS Health E-Stat. 

Society of Actuaries (“SOA”). (n.d.). Mortality and other rate tables. https://mort.soa.org/  

 


